Deficiencies of folate and vitamin B(6) exert distinct effects on homocysteine, serine, and methionine kinetics.

نویسندگان

  • G J Cuskelly
  • P W Stacpoole
  • J Williamson
  • T G Baumgartner
  • J F Gregory
چکیده

Folate and vitamin B(6) act in generating methyl groups for homocysteine remethylation, but the kinetic effects of folate or vitamin B(6) deficiency are not known. We used an intravenous primed, constant infusion of stable isotope-labeled serine, methionine, and leucine to investigate one-carbon metabolism in healthy control (n = 5), folate-deficient (n = 4), and vitamin B(6)-deficient (n = 5) human subjects. The plasma homocysteine concentration in folate-deficient subjects [15.9 +/- 2.1 (SD) micromol/l] was approximately two times that of control (7.4 +/- 1.7 micromol/l) and vitamin B(6)-deficient (7.7 +/- 2.1 micromol/l) subjects. The rate of methionine synthesis by homocysteine remethylation was depressed (P = 0.027) in folate deficiency but not in vitamin B(6) deficiency. For all subjects, the homocysteine remethylation rate was not significantly associated with plasma homocysteine concentration (r = -0.44, P = 0.12). The fractional synthesis rate of homocysteine from methionine was positively correlated with plasma homocysteine concentration (r = 0.60, P = 0.031), and a model incorporating both homocysteine remethylation and synthesis rates closely predicted plasma homocysteine levels (r = 0.85, P = 0.0015). Rates of homocysteine remethylation and serine synthesis were inversely correlated (r = -0.89, P < 0.001). These studies demonstrate distinctly different metabolic consequences of vitamin B(6) and folate deficiencies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dietary vitamin B-6 restriction does not alter rates of homocysteine remethylation or synthesis in healthy young women and men.

BACKGROUND The effects of vitamin B-6 status on steady-state kinetics of homocysteine metabolism in humans are unclear. OBJECTIVE The objective was to determine the effects of dietary vitamin B-6 restriction on the rates of homocysteine remethylation and synthesis in healthy humans. DESIGN Primed, constant infusions of [(13)C(5)]methionine, [3-(13)C]serine, and [(2)H(3)]leucine were conduct...

متن کامل

Folic acid and the methylation of homocysteine by Bacillus subtilis.

1. Cell-free extracts of Bacillus subtilis synthesize methionine from serine and homocysteine without added folate. The endogenous folate may be replaced by tetrahydropteroyltriglutamate or an extract of heated Escherichia coli for the overall C(1) transfer, but tetrahydropteroylmonoglutamate is relatively inactive. 2. Extracts of B. subtilis contain serine transhydroxymethylase and 5,10-methyl...

متن کامل

Tracer-derived total and folate-dependent homocysteine remethylation and synthesis rates in humans indicate that serine is the main one-carbon donor.

Hyperhomocysteinemia in humans is associated with genetic variants of several enzymes of folate and one-carbon metabolism and deficiencies of folate and vitamins B12 and B6. In each case, hyperhomocysteinemia might be caused by diminished folate-dependent homocysteine remethylation, but this has not been confirmed in vivo. Because published stable isotopic tracer approaches cannot distinguish f...

متن کامل

Vitamin B6 deficiency, genome instability and cancer.

Vitamin B6 functions as a coenzyme in >140 enzymatic reactions involved in the metabolism of amino acids, carbohydrates, neurotransmitters, and lipids. It comprises a group of three related 3-hydroxy-2-methyl-pyrimidine derivatives: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM) and their phosphorylated derivatives [pyridoxal 5'-phosphate (PLP) and pyridoxamine 5'-phosphate (PMP)], In the f...

متن کامل

مقایسه سطح سرمی هموسیستیین در بیماران مبتلا به دیابت نوع 2 مصرف‌کننده متفورمین و گلی‌بن‌کلامید

Background: Diabetes mellitus is the most common cause of renal failure, blindness, non- traumatic amputation and neuropathy. Homocysteine, a sulfurated amino acid, has a close correlation with Methionine and Cysteine. The conversion of Methionine to Homocysteine and Cysteine is required coenzymes like vitamin B6, B12 and Folate. The effect of Metformin on serum Homocysteine level by decreasing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 281 6  شماره 

صفحات  -

تاریخ انتشار 2001